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Short-range particle correlations in a dilute Bose gas
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The thermodynamics of a homogeneous dilute Bose gas with an arbitrarily strong repulsion between par-
ticles is investigated on the basis of the exact relation connecting the pair correlation function with the
in-medium pair wave functions and occupation numbers. It is shown that the effective-interaction scheme,
which is reduced to the Bogoliubov model with the effective pairwise potential, is not acceptable for investi-
gating the short-range particle correlations in a dilute strongly interacting Bose gas. In contrast to this scheme,
our model is thermodynamically consistent and free of the ultraviolet divergences due to accurate treatment of
the short-range boson correlations. An equation for the in-medium scattering amplitude is derived that makes
it possible to find the in-medium renormalization for the pair wave functions at short boson separations.
Low-density expansions for the main thermodynamic quantities are reinvestigated on the basis of this equation.
In addition, the expansions are found for the interaction and kinetic energies per particle. It is demonstrated that
for a many-boson system of hard spheres the interaction energy is equal to zero for any boson density. The
exact relationship between the chemical potential and in-medium pair wave functions is also established.

PACS number~s!: 05.30.Jp, 67.40.Db, 03.75.Fi
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I. INTRODUCTION AND BASIC EQUATIONS

The well-known experiments with magnetically trapp
alkali-metal atoms@1# have significantly renewed interest
the theory of Bose-Einstein condensation~see, e.g., Ref.@2#!.
In particular, it has recently been demonstrated by
present authors@3# that the customary way of investigating
dilute Bose gas with a purely repulsive and arbitrarily stro
interaction @4# is thermodynamically inconsistent. Atn
5N/V→0 this method is known@5# to be reduced to the
Bogoliubov model@6# with the ‘‘bare’’ pairwise potential
F(r ) replaced by an effective, ‘‘dressed’’ one. This is wh
below the approach of Ref.@4# is called the ‘‘effective-
interaction method.’’ The dressed pairwise potential is u
ally derived by summing the ladder diagrams and involv
as is assumed, all the necessary information on the sh
range spatial correlations of bosons@4#. In the final expres-
sions use of the effective interaction results in substitut
the exact scattering lengtha for its Born approximationa0
@5#. This allows for operating with strongly singular pote
tials, but at the price of loss of the thermodynamic cons
tency. In contrast, the strong-coupling generalization of
Bogoliubov model proposed by the present authors in@3# is
based on avariational procedure and does not invoke an
mean-field arguments. Owing to this structure of the gen
alization we do not need to worry about the thermodynam
consistency.

The trouble mentioned above gives rise to various misr
resentations of the effective-interaction approach. For
ample, the condition of self-consistency leads to zero c
densate depletion within the pseudopotential model@7#.
Another manifestation is an irrelevant picture of the pair b
son correlation at short particle separations. This impor
point calls for a comprehensive analysis which was not
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filled in Ref. @3# for reasons of space. Thus, in the prese
paper, we continue reinvestigation of a dilute Bose gas w
an arbitrarily strong repulsion between particles within t
model proposed in@3#, the short-range boson correlation
being of special interest now. Zero temperature is under c
sideration below.

The formalism of the present paper is concerned wit
reduced density matrix of the second order~the two-matrix!
and its eigenfunctions, which we call, following Bogoliubo
@8#, the in-medium pair wave functions. As the two-matr
and its eigenfunctions are not often discussed in the mod
scientific literature on Bose-Einstein condensation, it
worth noting some basic notation and formulas. The tw
matrix for a many-body system of spinless bosons can
represented as@9#

r2~r18 ,r28 ;r1 ,r2!5
F2~r1 ,r2 ;r18 ,r28!

N~N21!
,

where the pair correlation function is given by

F2~r1 ,r2 ;r18 ,r28!5^ĉ†~r1!ĉ†~r2!ĉ~r28!ĉ~r18!&. ~1!

Here ĉ(r ) and ĉ†(r ) denote the boson field operators. U
of the pair correlation function, which differs from the two
matrix only by the normalization factor, is more convenie
in the thermodynamic limit (n5N/V5const, V→`) when
F2(r1 ,r2 ;r18 ,r28)}1 while r2(r18 ,r28 ;r1 ,r2)}1/V2. Recently
it has been found@3,10,11# that for a uniform Bose system
with a small depletion of the zero-momentum state the c
relation function~1! can be written in the thermodynami
limit as follows:

F2~r1 ,r2 ;r18 ,r28!5n0
2w* ~r !w~r 8!12n0

3E d3q

~2p!3
nqwq/2* ~r !wq/2~r 8!

3exp@ iq•~R82R!#, ~2!
1646 ©2000 The American Physical Society
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PRE 62 1647SHORT-RANGE PARTICLE CORRELATIONS IN A . . .
wherer5r12r2 , R5(r11r2)/2, and similar relations hold
for r 8 andR8, respectively. In Eq.~2! n05N0 /V is the den-
sity of particles in the zero-momentum one-boson statenq

5^âq
†âq& stands for the distribution of the uncondens

bosons over momenta, andw(r ) and wq/2(r ) are pair wave
functions in medium in the center-of-mass system. That
w(r ) is the wave function of a pair of particles, both bein
condensed. In turn,wq/2(r ) denotes the wave function of th
relative motion of a pair of bosons with the total momentu
\q, this pair including one condensed and one unconden
particle. So Eq.~2! takes into account the condensa
condensate and supracondensate-condensate pair state
is related to the situation of a small depletion of the ze
momentum one-boson state. For the pair wave functions
have

w~r !511c~r !, wp~r !5A2 cos~p•r !1cp~r !~p5” 0!,
~3!

where the scattering wavesc(r ) andcp(r ) obey the bound-
ary conditions forr→`

c~r !→0, cp~r !→0, ~4!

which follow from the Bogoliubov principle of correlation
weakening@8#. The Fourier transforms of the functionsc(r )
and cp(r ) can explicitly be expressed in terms of the Bo
operatorsâp

† and âp @10#:

c~k!5^âkâ2k&/n0 ,cp~k!5A V

2n0

^â2p
† âp1kâp2k&

n2p
.

~5!

In the representation~2! the terms corresponding to th
supracondensate-supracondensate ‘‘channel’’ are negle
i.e., we omit the contribution of pairs of particles that a
both uncondensed. Additionally, it is assumed that there
no bound states of pairs of bosons, which is obviously re
ized for a purely repulsive interaction between bosons.

The diagonal matrix element of the pair correlation fun
tion ~2! is proportional to the pair distribution function

g~r !5F2~r1 ,r2 ;r1 ,r2!/n2 ~6!

that can be observed directly in scattering experiments. D
vation of Eqs.~2!–~5! and detailed discussion can be fou
in Ref. @10#.

The two limiting casesn→0 andr→0 correspond to the
situation when the behavior of two particles in the medium
determined by the ordinary two-body problem provided
pairwise interactionF(r ) is repulsive and goes to infinity a
short boson separations. In particular, whenn→0 we have
(n2n0)/n→0 and, as has been known since the Bogoliub
original paper and follows also from Eqs.~2! and ~6!,

g~r !→@w (0)~r !#2. ~7!

Herew (0)(r ) is defined byw (0)(r )5 limn→0w(r ) and obeys
the ordinary two-body Schro¨dinger equation in the center-o
mass system ~9! ~see Ref. @6#!. Similarly, wp

(0)(r )
5 limn→0wp(r ) obeys the Schro¨dinger equation related to th
eigenvalue\2p2/m that corresponds to the relative motion
s,
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two particles with momentum\p. These conditions should
be satisfied in any theory that appropriately takes into
count the short-range correlations of particles. Below
show that our model@3# leads to the correct picture of th
spatial correlations@in contrast to the effective-interactio
approach, which leads to negative values of the pair dis
bution function~see Sec. V!#.

Having at our disposal the distribution functionnk and the
set of pair wave functionsw(r ) and wp(r ), we are able to
calculate the main thermodynamic quantities of the sys
of interest. In particular, the mean energy per particle is
pressed in terms ofnk andg(r ) via the well-known formula
~see, e.g., Ref.@9#!

«5E d3k

~2p!3
Tk

nk

n
1

n

2E d3rg~r !F~r !, ~8!

whereTk5\2k2/2m is the one-particle kinetic energy,m is
the ‘‘bare’’ mass of the particles, andn5N/V stands for the
boson density.

The organization of this paper is as follows. In Sec. II w
give, for convenience, helpful information concerning t
classification of pairwise potentials used in the ordinary tw
body problem. In Sec. III the Bogoliubov model of a weak
interacting Bose gas is considered within a variatio
scheme. This scheme yields a system of two equations
nectingnk with w(r ). As to the supracondensate-condens
pair wave functions, they are the symmetrized plane wa
in the Bogoliubov model:cp(r )50. In the next section the
low-density expansions for the condensate depletion
mean energy per particle of a weak-coupling Bose gas
calculated within the Bogoliubov model. The effectiv
interaction approach of Ref.@4# is analyzed in Sec. V. Using
the results of the previous Secs. III and IV, we show that
effective-interaction approach is thermodynamically inco
sistent. This inconsistency turns out to be directly related
an irrelevant picture of the short-range spatial boson corr
tions. In particular, for a strongly singular potential th
effective-interaction scheme yields for the pair distributi
function the nonphysical resultg(r 50)521 in the limit n
→0. It is also demonstrated that the well-known ultravio
divergence appearing in the effective-interaction approac
well as the thermodynamic inconsistency occur because
Bogoliubov framework is used beyond the range of its val
ity. The regularizing procedure, which consists in omitti
the divergent integral*d3k/k2, can be justified provided the
quantities of interest depend on the pairwise poten
through the mediation of the scattering length@Eq. ~11! be-
low#. Section VI concerns a correct strong-coupling gen
alization of the Bogoliubov model. This generalization
based on Eq.~6! taken together with Eq.~2! but not with its
linearized variant Eq.~25! ~below! used in the effective-
interaction approach, which is the weak-coupling approxim
tion for g(r ). A variational procedure similar to that of Se
III is formulated. It provides the system of equations th
should be solved to find the pair wave functions in conjun
tion with the momentum distribution. For a dilute Bose g
this system is reduced to a set of two equations connec
nk andw(r ). There is an essential difference between th
equations and those of Sec. III. Now the pairwise poten
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F(r ) appears only in the combinationw(r )F(r ), which al-
lows for using the strongly singular potentials beyond
effective-interaction scheme. In what concerns
supracondensate-condensate contribution to the therm
namic quantities, it can be calculated with the relati
limp→0wp(r )5A2w(r ) resulting from Eqs.~3! and ~4!. In
Sec. VII we investigate the short-range renormalization
w(r ) conditioned by the presence of surrounding bosons
long-range behavior is also discussed. The whole invest
tion of this section is based on the in-medium Lippman
Schwinger equation coming from the equation forw(r )
found in Sec. VI. In Sec. VIII the low-density expansions f
the Bose condensate depletion, the energy per particle,
the chemical potential are found within the model presen
in Sec. VI, various methods of calculation being used. F
this purpose we establish the exact relationship between
chemical potential and pair wave functions in a conden
many-boson system. Here we also evaluate the kinetic
interaction energies per particle which, to our knowled
have never been calculated before. It should be stressed
they explicitly depend on the shape of the pairwise poten
even in the leading order of the low-density expansion. In
framework of our approach we are able to perform all
calculations concerning the kinetic and potential energ
both directly and with the Hellmann-Feynman theorem,
contrast to the effective-interaction method. The main res
and prospects are discussed in the last section.

II. CLASSIFICATION OF INTERACTION POTENTIALS

Before further consideration we recall the classification
the pairwise interactionsF(r ) that is used in the ordinary
two-body problem. In this paper we deal only with sho
range potentials that go to zero forr→` as F(r )
→1/r m (m.3), or even faster. Let us consider the soluti
of the two-body Schro¨dinger equation in the center-of-ma
system,

2
\2

m
¹2w (0)~r !1F~r !w (0)~r !50, ~9!

which corresponds to the scattering state with the momen
p50:w (0)(r )511c (0)(r ), where the scattering part be
haves as

c (0)~r !→2a/r ~10!

whenr→`. Owing to this boundary condition with the rea
quantitya, the solutionw (0)(r ) is chosen to be real also. Th
scattering lengtha is defined by means of the scattering a
plitude U (0)(0):

a5
m

4p\2
U (0)~0!, ~11!

U (0)~0!5E d3rw (0)~r !F~r !. ~12!

As applied to Eq.~9!, the perturbation technique gives th
expansion for its solution
e
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c (0)~k!5c1
(0)~k!1c2

(0)~k!1•••, ~13!

c1
(0)~k!52F~k!/~2Tk!, ~14!

which leads to the following expansion for the scatteri
length ~11!:

a5a01a11a21•••, ~15!

a05
m

4p\2
F~k50!, a152

m

4p\2E d3k

~2p!3

F2~k!

2Tk
.

~16!

Here c (0)(k) and F(k) stand for the Fourier transforms o
c (0)(r ) andF(r ), respectively. If we restrict ourselves to th
first terms in Eqs.~13! and ~15! @c (0)(k).c1

(0)(k) and a
.a0] we arrive at the Born approximation for the wav
function and the scattering length, respectively.

The interaction is called the weak-coupling one, provid
the Born approximation works well, in particular,

E d3k

~2p!3

F2~k!

2Tk
!F~k50!. ~17!

This is valid if, first, the potentialF(r ) is integrable, and,
second, it is proportional to a small parameter, the coup
constant. The latter implies thatuc (0)(r )u!1, and so the
Born approximation~14! is nothing but a linearization of Eq
~9! with respect toc (0)(r ), proportional to the coupling con
stant:

¹2@11c (0)~r !#

@11c (0)~r !#
.¹2c (0)~r !.

The potential is called singular if it is integrable but the Bo
approximation does not work well. Finally, the potential is
strongly singular, or hard-core, type if it is not integrab
@F(r )→1/r m(m>3) for r→0], and the terms~14! and~16!
thus cannot exist. In the present paper a pairwise interac
of this type is exactly implied when we speak about t
strong-coupling regime. For example, the well-know
Lennard-Jones potential corresponds to this case toge
with the hard-sphere interaction,

F~r !5H 1`, r ,a

0, r .a.
~18!

In the strong-coupling regime the solution of Eq.~9! obeys
the boundary conditionw (0)(r 50)50, otherwise the inter-
action energyEint5*d3r @w (0)(r )#2F(r ) and the scattering
length ~11! would be infinitely large.

In further consideration we make use of the variation
theorem for the scattering amplitude~12!:

dU (0)~0!5E d3r Fc (0)~r !dS 2
\2

m
¹2Dc (0)~r !

1w (0)~r !d„F~r !…w (0)~r !G . ~19!
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In order to prove this relation, we represent Eq.~12! in the
form

U (0)~0!5E d3r S \2

m
u¹c (0)~r !u21@w (0)~r !#2F~r ! D ,

~20!

which can be found using integration by parts and taking i
account the Schro¨dinger equation~9! and the boundary con
dition ~10!. Further, varying Eq.~20! and keeping in mind
Eqs.~9! and~10!, we arrive at Eq.~19!. The relation~19! is
analogous to the variational theorem for the energy:

dEn5E d3rwn
(0)~r !dS 2

\2

m
¹21F~r ! Dwn

(0)~r !.

Here the real wave functionwn
(0)(r ) obeys the Schro¨dinger

equation for a bound state with energyEn . Equation~20!
can be represented in the more convenient form

E d3r @w (0)~r !#2F~r !54p\2~a2b!/m. ~21!

Here one more characteristic lengthb ~in addition toa) has
been introduced:

b5
1

4pE d3r u¹c (0)~r !u2. ~22!

It follows from Eq. ~22! that b is a positive quantity. We
stress thatb is not expressed in terms ofa and depends on a
particular shape of the interaction potentialF(r ). For ex-
ample, whenF(r ) is the hard-sphere potential~18!, we have
b5a, while for F(r ) close to zero, in the weak-couplin
regime, we haveb.2a1 , a.a0, and henceb!a.

Lastly, from the definitions~11! and ~22! and the varia-
tional theorem~19! it follows that

g
]a

]g
5m

]a

]m
5a2b, ~23!

where we introduce the auxiliary parameterg called the cou-
pling constant@i.e., F(r )→gF(r )#. The first equality in Eq.
~23! implies that a5a(gm), which is an obvious conse
quence of the definition~11! and the Schro¨dinger equation
~9!. The relations~23! demonstrate that the quantityb is
expressed in terms ofa and its derivative with respect tog
~or m) rather than in terms ofa.

III. VARIATIONAL TREATMENT OF THE BOGOLIUBOV
MODEL

Although the aim of this paper is to investigate a dilu
Bose gas with strong-coupling interaction, it is instructive
start with the Bogoliubov model related to the wea
coupling regime. This regime implies a minor role of partic
scattering, both in the medium and out of it, and thus
characterized by the following inequalities for the scatter
waves~3!:

uc~r !u!1, ucp~r !u!1. ~24!
o

s
g

In particular, the Bogoliubov model operates with the cho
@3,10,11#

uc~r !u!1, cp~r !50.

As the depletion of the Bose condensate (n2n0)/n is small
in a weakly interacting many-boson system, we have for
one-particle density matrixF1(r )5^ĉ†(r1)ĉ(r2)&

UF1~r !

n U5U E d3k

~2p!3

nk

n
exp~ ik•r !U< n2n0

n
!1.

So the Bogoliubov scheme of treating a Bose gas invol
two small quantitiesc(r ) and F1(r )/n and completely ne-
glects scattering in the supracondensate-condensate sec
g(r ):cp(r )50. This along with Eq.~2! allows for rewriting
Eq. ~6! in the following form:

g~r !5112c~r !1
2

nE d3k

~2p!3
nk exp~ ik•r !. ~25!

Here we have restricted ourselves to the terms linear inc(r )
andF1(r )/n. In addition, it is implied thatc* (r )5c(r ), for
the pair wave functions can be chosen as real quanti
Inserting Eq.~25! into Eq. ~8!, we are able to employ a
variational procedure to derive the unknown quantitiesc(k)
andnk . In so doing, we should realize thatnk andc(k) are
not independent variables. In fact, there are no spatial bo
correlations in the absence of interaction@12#. Hence in this
casec(k)50, and, as we investigate the ground state, all
bosons are condensed,nk50. In the presence of interactio
c(k)5” 0, which leads to a nonzero depletion and sonk5” 0.
Within the Bogoliubov modelc(k) is related tonk by

nk~nk11!5n0
2c2~k!. ~26!

Indeed, according to the canonical Bogoliubov transform
tion, quasiparticle operatorsâk

† and âk are connected with
the operators of the primordial bosons by the expression

âk5ukâk1vkâ2k
† , âk

†5ukâk
†1vkâ2k , ~27!

where

uk
22vk

251. ~28!

Within the Bogoliubov model the ground state of the syst
of interest is the Bogoliubov quasiparticle vacuum, and so
zero temperature we have

^âk
†âk&50. ~29!

Then, using Eqs.~5!, ~27!, and~29!, one can find

nk5vk
2 , c~k!5ukvk /n0 ,

which in conjunction with Eq.~28! leads to Eq.~26!. We
remark that beyond the Bogoliubov scheme Eq.~26! is not
valid and should be corrected@see Eq.~51! in the present
paper and discussion on this question in Ref.@3##.

Now, inserting Eq.~25! into Eq. ~8! and varying the re-
sulting expression with respect toc(k) andnk , we derive
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d«5E d3k

~2p!3 S @Tk1nF~k!#
dnk

n
1nF~k!dc~k! D .

~30!

According to Eq.~26! infinitesimal changesdc(k) anddnk
are connected by

dc~k!5
~2nk11!dnk

2n0
2c~k!

1
c~k!

n0
E d3q

~2p!3
dnq , ~31!

where the equality

n5n01E d3k

~2p!3
nk

is implied. Takingd«50 and using Eqs.~30! and ~31!, we
find the following equation:

22Tkc~k!5
n2

n0
2
F~k!~112nk!12nc~k!

3S F~k!1
n

n0
E d3q

~2p!3
F~q!c~q!D .

~32!

Note that Eq.~32! is able to yield results accurate only to th
leading order in (n2n0)/n because Eq.~25! is valid to the
next-to-leading order@13#. So Eq.~32! should be written in
the form

22Tkc~k!5F~k!~112nk!12nc~k!F~k!, ~33!

which, with the help of Eq.~25!, can be represented as

\2

m
¹2w~r !5F~r !1nE d3yF~y!@g~ ur2yu!21#.

~34!

Equation~34! is very similar to the Bethe-Goldstone equ
tion. Necessary details concerning Eq.~34! can be found in
Refs.@11,14#. We remark that the right-hand side~rhs! of Eq.
~34! can be thought of as the in-medium potential of t
boson-boson interaction in the Born approximation. Inde
Eq. ~34! is derived from the more general equation given
Eq. ~56! below by means of linearization inc(r ) and
F1(r )/n. So the Bogoliubov model can be treated as
in-medium Born approximation for its generalization dev
oped on the basis of Eqs.~2! and ~6! beyond the weak-
coupling regime~see Sec. VI!. In accordance with this treat
ment, Eq.~34! at n50 is nothing but the Fourier transform
of Eq. ~14!, while Eq. ~56! is reduced to the exact Schro¨-
dinger equation~9! at n50. We will return to this important
point in Sec. V.

The system of Eqs.~26! ~here we should setn5n0) and
~33! can easily be solved, which leads to the familiar resu
@6#

nk5
1

2 S Tk1nF~k!

ATk
212nTkF~k!

21D , ~35!
,

e
-

s

c~k!52
1

2

F~k!

ATk
212nTkF~k!

. ~36!

IV. DENSITY EXPANSIONS IN THE BOGOLIUBOV
MODEL

As we mentioned, in this paper we investigate the stro
coupling regime for a dilute Bose gas. So considering a
lute Bose gas in the weak-coupling approximation can b
good exercise providing us with useful information. Let
investigate the thermodynamics of a dilute many-boson s
tem within the Bogoliubov model. With Eqs.~8!, ~25!, ~35!,
and ~36! we derive

«5
n

2
F~0!1

1

2nE d3q

~2p!3

3~ATq
212nTqF~q!2Tq2nF~q!!. ~37!

Here we describe in detail the method for obtaining the lo
density expansions for expressions like Eq.~37!. This equa-
tion can be represented in the following form:

«5
n

2 S F~0!2E d3q

~2p!3

F2~q!

2Tq
D 1I , ~38!

where

I 5 1
2 E d3q

~2p!3 SATq
2

n2
12

Tq

n
F~q!

2
Tq

n
2F~q!1

F2~q!

2~Tq /n!D .

Now, with the ‘‘scaling’’ substitution

q5q8A2mn/\, ~39!

we derive

I

n3/2
5

1

2 S 2m

\2 D 3/2E d3q8

~2p!3
f ~q8,n!, ~40!

where

f ~q8,n!5A~q8!412~q8!2F~q8A2mn/\!2~q8!2

2F~q8A2mn/\!1
F2~q8A2mn/\!

2~q8!2
.

The advantage of the representation~38! is that the resulting
integral in Eq. ~40! uniformly converges forq8→` with
respect ton for n→0, and thus we obtain

lim
n→0

I

n3/2
5

1

2 S 2m

\2 D 3/2E d3q8

~2p!3
f ~q8,n50!.

Here the integral is readily calculated, and the main asym
totics for I (n) is given by
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I .
8

15p2 S mn

\2 D 3/2

F5/2~0!. ~41!

Further, with the help of Eqs.~16!, ~38!, and ~41!, the ex-
pression~37! is rewritten as

«5
2p\2n~a01a1!

m
1

2p\2na0

m

128

15Ap
Ana0

31•••.

~42!

Thus, we obtain the first two terms in the density expans
for the energy per particle within the Bogoliubov model.

The density expansion for the condensate depletion is
ferred from Eq.~35! in the same manner employing the su
stitution ~39!:

z5
n2n0

n
5E d3q

~2p!3

nq

n
5

8Ana0
3

3Ap
1•••. ~43!

Now let us discuss the range of validity of the Bogoliub
model. First, the condensate depletion~43! should be small
as the representation for the pair correlation function~2! that
we start from is valid only in this case. Note that, if w
expand the depletion with respect to the coupling constang
@we assume thatF(r )}g#, we also arrive at Eq.~43! since
the occupation number~35! depends only on the productio
ng. Thus, the conditionna0

3!1 should be fulfilled. Second
we exploit the weak-coupling character of the pairwise int
action F(r ), which implies that the condition~17! should
also be satisfied. Note that Bogoliubov himself realized t
necessary condition since he treated the termnF(0)/2
52p\2na0 /m involved in the mean energy~37! as the ma-
jor one @6#. Beyond the inequality~17! the model may be
thermodynamically unstable. In particular, the opposite c

F~0!,E d3k

~2p!3

F2~k!

2Tk
~44!

leads to a negative scattering length in the next-to-Born
proximationa5a01a1,0, which at sufficiently low densi-
ties results in the incorrect sign for the compressibilit
2]2E/]V25]P/]V.0 as is seen from Eq.~42!. Note that
this important point is not always stressed in the literatu
Moreover, Bru and Zagrebnov@15# proposed a model re
duced to the Bogoliubov approach but in conjunction w
the inequality~44!. We have to conclude that this mod
hardly has physical sense.

V. SHORT-RANGE CORRELATIONS AND ULTRAVIOLET
DIVERGENCE WITHIN THE EFFECTIVE-INTERACTION

APPROACH

After the detailed consideration in the previous sectio
we can argue that the Bogoliubov model with the ‘‘bare
potentialF(r ) replaced by an effective one@4# is thermody-
namically inconsistent. Indeed, the basic relations of the
goliubov model~25! and ~26! do not depend explicitly on
interaction. Hence, the pairwise potential appearing in E
~33!–~36! comes from Eq.~8!, which is the general relation
valid in both the weak- and strong-coupling regimes. Thu
n

n-

-

s

e

p-

.

,

-

s.

a

calculating procedure based on Eqs.~25! and ~26! has to
eventuate in Eqs.~33!–~36!. Otherwise, as in the case o
using the Bogoliubov model with an effective interactio
this procedure does not yield a result minimizing the me
energy. Note that we do not mean, of course, that
t-matrix approach or the pseudopotential method canno
applied in quantum scattering problems. It is only stated t
the usual way of combining the ladder diagrams with t
random-phase approximation ones~‘‘bubbles’’! leads to a
thermodynamic inconsistency.

To clarify the reason for this inconsistency, let us take
look at the picture of the spatial boson correlations derived
the framework of the effective-interaction approach. Acco
ing to the paper by Hugenholtz and Pines@4# @see Eq.~5.10a!
therein#, the structure factor

S~k!511nE d3r @g~r !21#exp~2 ik•r ! ~45!

of a strong-coupling Bose gas can be written atn→0 as
follows:

S~k!5112
n0

n
^âk

†âk&1
n0

n
~^âkâ2k&1^â2k

† âk
†&!. ~46!

Using Eq.~5!, the equalityc(k)5c* (k) @16#, and definition
~45! of the structure factor, one can readily verify that E
~46! is reduced to Eq.~25!. This Bogoliubov relation does
not depend on the interaction potential explicitly. So use
the dressed interaction can in no way disturb the form of
~25!, and, therefore, the effective-interaction approach de
with a pair distribution function whose structure has obvio
weak-coupling character. In particular, from Eq.~46! it can
be found thatg(r )→112c (0)(r ) for n→0, as opposed to
the correct strong-coupling result given by Eq.~7!. However,
the wave functionw (0)(r ) obeys Eq.~9! in the effective-
interaction approach@17#, while within the Bogoliubov
modelw (0)(r ) is the solution of Eq.~34! at n50. This equa-
tion @Eq. ~34! at n50# comes from the Schro¨dinger equation
~9! in the Born approximation~see the discussion in Sec. III!.
Thus, the effective-interaction approach is not totally
duced to the weak-coupling framework due to its features
strong-coupling character.Exactly this combination of the
peculiarities of both the strong- and weak-coupling regim
is the reason for the thermodynamic inconsistency mentio
above.

It is also worth noting that this combination of the fe
tures of weakly and strongly interacting Bose gases leads
only to the thermodynamic inconsistency, but also to an
relevant picture of the short-range boson correlations.
deed, in the case of a strongly singular pair interaction for
solution of Eq. ~9! we havew (0)(r 50)50 ~see Sec. II!,
which provides c (0)(r 50)521. Within the effective-
interaction schemeg(r ) obeys Eq.~25! while w (0)(r ) satis-
fies Eq.~9!. This implies thatg(r 50)→112c (0)(r 50)5
21 in the zero-density limit when (n2n0)/n→0. The result
obtained does not agree with the physical sense ofg(r ) ~the
conditional probability! and has nothing to do with the
strong-coupling regime when the relationg(r 50)50 has to
be satisfied. The situation is even aggravated if we recall
the scattering parts of the supracondensate-condensate
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wave functionscp(r ) are equal to zero in the Bogoliubo
model. So, in what concerns the pair distribution functio
the ‘‘triple’’ correlations involved in Eq.~5! for cp(k) are
completely ignored within the effective-interaction schem
However, when deriving an equation for the effective pote
tial, these correlations are taken into consideration, for
ample, within the Beliaev approach~see the discussion in th
review @18#!. So we face one more combination of the wea
and strong-coupling features that is characteristic of the
proach of Ref.@4#.

Since the short-range behavior of the pair distribut
function is not correct within the effective-interaction a
proach, one can expect some problems related to evalua
of the mean energy~8!. Let us consider the effective
interaction method in its simplest variant, the so-cal
pseudopotential model~see the paper by Lee, Huang, a
Yang of Ref. @4#!. This variant implies the replacemen
F(r )→d(r )4p\2a/m, and hence for the Fourier transfor
we have

F~k!→4p\2a/m5const, ~47!

where a is the scattering length~11! obtained from the
Schrödinger equation~9!. So the pseudopotential model
reduced to the Bogoliubov model with the effective pairw
interaction given by Eq.~47!. In a well-known textbook@5#
one can find two ways of calculating the leading and ne
to-leading terms of the low-density expansion of the ene
of a dilute Bose gas within the pseudopotential model. O
of them ~see pp. 314–319! consists in dealing directly with
the Hamiltonian of the system and faces the divergent in
gral *d3k/k2 ~the ultraviolet divergence!. The second~given
on pp. 218–223! allows for calculating the difference«
2m/2 and does not lead to any divergence.

In the previous section we have derived the low-dens
expansion~42! corresponding to the Bogoliubov model. Th
expansion can help us to understand the reasons for the
biguous result of the pseudopotential model. Use of
pseudopotential~47! leads to the substitutiona→a0 in Eq.
~42!. In addition, a1→2` as it becomes proportional t
*d3k/k2 @see Eq.~16!#. This agrees with the result of the firs
way of calculating« in the textbook@5#. The divergent inte-
gral is usually removed because it is assumed that ‘‘this
vergence is not very basic’’@5#. So, we arrive at the correc
expression@Eq. ~70! below#, which is found in our model
beyond any divergences. The reason for the singularit
obvious because the necessary condition~17! of the validity
of the Bogoliubov model is not satisfied. However, the qu
tion remains why the pseudopotential approach results n
ertheless in the correct final expression~70!? The point is
that the effective-interaction scheme actually involves an
ditional assumption, namely, the Landau postulate~see the
footnote in Ref.@6# and discussion in Ref.@4#!. This postu-
late asserts that the properties of dilute quantum gases
ruled by the scattering lengtha @19#. Let us consider how the
additional assumption is used when deriving the low-den
expansion for the mean energy. According to the Land
argument this expansion should be of the form

«5c1~a!n1c2~a!n3/21•••, ~48!
,

.
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-
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where the factorsci can depend on various quantities but o
of them, the ‘‘bare’’ potentialF(r ), is involved only through
the mediation of the scattering length~11!. Substituting the
Born series~15! in the expressions forci(a) in the weak-
coupling regime, we obtain

ci~a!5ci~a01a11••• !.ci~a0!1
]ci~a!

]a U
a5a0

a11•••.

~49!

As the functional dependenciesci(a) are of the same form in
both the weak- and strong-coupling regimes, one is able
restore them by keeping the Born termsci(a0) in the expan-
sion ~48! and omitting others~dependent ona1 ,a2 , . . . ). It
can readily be verified in this way that Eq.~42! leads to Eq.
~70!. Thus, the pseudopotential approach provides~after
regularization! the correct result given by Eq.~70! because it
is equivalent, in the first two orders of the low-density e
pansion, to a calculating scheme using the Bogoliubov mo
together with Eqs.~48! and~49! based on the Landau postu
late @20#. Note that this simple scheme looks even more
curate and justified than the pseudopotential approach
least, it allows for investigating a strongly interacting Bo
gas beyond any ultraviolet divergence which appears a
result of violating the subtle balance of correlation term
coming from the boson-boson scattering. However, neit
the pseudopotential approach nor the Bogoliubov model u
together with Eqs.~48! and ~49! can yield adequate micro
scopic results concerning the strong-coupling regime.

The second way of calculating«(n) within the pseudopo-
tential model allows one to find the low-density expansi
~48! starting from the difference

«2
m

2
5«2

1

2

]~«n!

]n
.2

2p\2na0

m

32

15Ap
Ana0

3, ~50!

where Eq.~42! and the well-known thermodynamic relatio
m5]@n«(n)#/]n are of use. There is no divergent integr
here due to the specific property of the expansion~42!: a1 is
involved only in the leading-order term that is exactly ca
celed in Eq.~50! @20#. The solution of the differential equa
tion ~50! ~after replacinga0 by a) is of the form «5c1n
1(2p\2na/m)(128/15Ap)Ana3. To specifyc1, a constant
of integration, one again needs to involve information ad
tional to Eq.~50!. Following Landau andpostulatingthat c1
depends on the pairwise potential only through the media
of the scattering lengtha, one arrives atc152p\2a/m,
which eventuates in Eq.~70!.

Thus, we remark one more that the effective-interact
approachtaken in conjunction with the Landau postula
yields the correct expansion~70!. Even Wu’s term@21# in the
low-density expansion of the energy of a strong-coupl
Bose gas is likely to be correct because it is present in
weak-coupling calculations beyond the Bogoliubov mod
@22#. However, the microscopic results found within th
effective-interaction approach should be reexamined. S
correct strong-coupling generalization of the Bogoliub
model should be constructed. It is also of importance that
density expansions for the quantities depending on the f
of F(r ), for example, the interaction~76! and kinetic~77!
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energies below, cannot be derived directly within t
effective-interaction scheme. We discuss this point in S
VIII E.

VI. STRONG-COUPLING GENERALIZATION OF THE
BOGOLIUBOV MODEL

To avoid the serious problems mentioned in the previ
section, we should abandon the effective-interaction met
and use a way based on Eq.~2!. Equations~2!, ~6!, and~8!
make it possible to express« in terms of the pair wave func
tions and momentum distribution. So a variational proced
similar to that of Sec. III can be employed to determine th
basic quantities. In so doing we should again keep in m
that the momentum distribution depends on the scatte
waves~see Sec. III!. However, now we are not able to us
the Bogoliubov relation~26!, which does not take into ac
count scattering in the supracondensate-condensate sect
@3# the following extension of Eq.~26! was proposed:

nk~nk11!5n0
2c2~k!12n0E d3q

~2p!3
nqcq/2

2 ~k!. ~51!

This expression was derived with the help of the reasona
expectation that the equation forcp(k) should be reduced to
the equation forc(k) in the limit p→0. It is interesting to
note the obvious structural parallels between Eqs.~2! and
~51!. Now, inserting Eqs.~2! and ~6! into Eq. ~8! and then
perturbingc(k) andnk under the condition~51!, we find

22Tkc~k!5U~k!~112nk!12nc~k!U8~k!. ~52!

HereU(k) andU8(k) are defined by

U~k!5E d3rw~r !F~r !exp~2 ik•r !, ~53!

U8~k!5E d3r @wk/2
2 ~r !2w2~r !#F~r !

2E d3q

~2p!3

U~q!

c~q!
@ck/2

2 ~q!2c2~q!#. ~54!

An equation forcp(k) can be derived in the same manne
Note that we have the following limiting relation:

lim
p→0

wp~r !5A2w~r !, ~55!

where the factorA2 comes from the second expression
Eq. ~3!. Using the equation forcp(k), one can be convinced
thatc0(k)[ limp→0cp(k)5const3c(k). We should put this
constant equal toA2 in order to obtain Eq.~55! @23#. So we
havew(r )2A2wp(r )}p2 ~see Ref.@10# in @3#!, which pro-
videsU8(k)2U(k)}k4 for k→0. Additionally, it is easy to
verify that @U(k)2U8(k)#/Tk→0 whenk→`. Therefore at
small densitiesn@U8(k)2U(k)#!Tk for all momenta. This
is why the difference betweenU8(k) andU(k) does not play
a role when calculating the first two terms of the low-dens
expansions for the basic thermodynamic quantities. Thus
sufficiently small densities Eq.~52! can be rewritten in the
following form:
c.

s
d

e
e
d
g

. In

le

.

at

\2

m
¹2w~r !5w~r !F~r !1n

3E d3yw~y!F~y!@gtr~ ur2yu!21#, ~56!

wheregtr(r ) stands for the truncated pair distribution fun
tion, which is equal to the right-hand side of Eq.~25! even
beyond the weak-coupling regime.

Equations~2! @and, hence, Eqs.~6! and ~8!# and ~51! are
written with the condensate-condensate a
supracondensate-condensate channels taken into accoun
these relations are accurate to the next-to-leading orde
(n2n0)/n, Eq.~52! can be accurate only to the leading ord
in (n2n0)/n. So it would be wrong to solve Eq.~52! to-
gether with Eq.~51!. One should investigate Eq.~52! in con-
junction with the shortened version of Eq.~51! given by Eq.
~26!, where the equalityn5n0 is implied. The system of
Eqs.~26! and ~52! has the following solution:

nk5
1

2 S T̃k1nU~k!

AT̃k
212nT̃kU~k!

21D , ~57!

c~k!52
1

2

U~k!

AT̃k
212nT̃kU~k!

~58!

with T̃k5Tk1n@U8(k)2U(k)#. As to the supracondensate
condensate states, the goal of this paper makes it possibl
to go into details concerningwp(r ). It is sufficient only to
use Eq.~55!. In the zero-density limitn50 Eq. ~58! is re-
duced to the equationc(k)5c (0)(k)52U (0)(k)/(2Tk),
which can be rewritten in the form of Eq.~9!. So at small
densities all thermodynamic quantities can be expresse
terms of the vacuum~out-medium! scattering amplitude
U (0)(k) given by

U (0)~k!5E d3rw (0)~r !F~r !exp~2 ik•r !. ~59!

Below it is shown that this feature of Eqs.~57! and ~58!
results directly in Eqs.~65!, ~69!, and ~70!. So the low-
density energy expansion given by Eq.~70! is determined in
our model beyond any additional assumptions like the L
dau postulate in the pseudopotential approach. Equat
~57! and ~58! yield nk}1/k and c(k)}1/k at small boson
momenta. This is totally consistent with the well-know
‘‘1/ k2’’ Bogoliubov theorem@8#. It is interesting that the
correct low-momentum behavior ofnk andc(k) comes from
the relationU8(k)2U(k)}k4 which follows from Eq.~54!
taken in conjunction with Eq.~55!, a result of the principle of
correlation weakening. Note that Eqs.~35! and ~36! derived
within the Bogoliubov model can be obtained from Eqs.~57!

and ~58! by replacingT̃k and U(k) with Tk and F(k), re-
spectively. So in what concerns Eqs.~57! and~58!, the situ-
ation in our strong-coupling generalization of the Bogoli
bov model does look as if we operated with a weak
interacting Bose gas of the quasiparticles with the renorm
ized kinetic energyT̃k and the effective interactionU(r )
5w(r )F(r ). This is close to the expectations followin
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from the effective-interaction approach@4#. Due to the
boundary conditionU(k)2U8(k)}k4 at smallk the mass of
the quasiparticles coincides with that of the primord
bosons. However, as was mentioned in Ref.@3#, Eq. ~51! is
the simplest of the possible approximations, which are fix
by the necessary condition that the Bethe-Goldstone equa
for cp(k) is reduced to the equation forc(k) in the limit p
→0. These approximations lead to the same low-density
pansions for thermodynamic quantities~the energy, the
chemical potential, the condensate depletion! in the leading
and next-to-leading terms. However, the difference in
thermodynamics has to appear at small but finite densitie
well as in the higher-order terms in the density expansio
The same goes for the microscopic picture given by E
~57! and~58!. Here the different approximations of the rel
tionship between the momentum distribution and pair wa
functions can lead to some different details. In particular,
cannota priori exclude the possibility that there is a mo
relevant variant of Eq.~51! which leads toU8(k)2U(k)
}k2(k→0). In this situation the quasiparticle mass would
m* 5m/(11bn), whereb5 limk→0@U8(k)2U(k)#/Tk .

VII. SHORT-RANGE BOSON SPATIAL CORRELATIONS

Now, to elaborate on the picture of the short-range bo
correlations, let us investigate how the correlation hole sti
lated by the repulsion between bosons at small separa
changes due to the influence of the surrounding bosons
n→0 this hole is completely specified by the condensa
condensate pair wave functionw(r ). Exploring howU(k) is
expressed in terms ofU (0)(k) makes it possible to know how
w(r ) differs from w (0)(r ) at small boson separations. No
that the relation connectingU(k) with U (0)(k) has been pub-
lished in our previous paper@3# without supporting calcula-
tions for reasons of space. Let us give these important ca
lations here. Using the definition ofU(k) and Eq.~58!, for
the scattering amplitude one can find

U~k!5F~k!2 1
2 E d3q

~2p!3

F~ uk2qu!U~q!

AT̃q
212nT̃qU~q!

, ~60!

which can be called the in-medium Lippmann-Schwing
equation. Let us rewrite Eq.~60! in the form

U~k!5F~k!2 1
2 E d3q

~2p!3

F~ uk2qu!U~q!

Tq
2I ,

where forI we have

I 5 1
2 E d3q

~2p!3 S F~ uk2qu!U~q!

AT̃q
212nT̃qU~q!

2
F~ uk2qu!U~q!

Tq
D .

Performing the ‘‘scaling’’ substitution~39! in the integral
and then taking the zero-density limit in the integrand,
n→0 we find

I 52aF~k!, a5
Anm3

p2\3
U3/2~0!. ~61!
l
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From Eqs.~60! and ~61! it now follows that

U~k!2U (0)~k!5aF~k!

2E d3q

~2p!3

F~ uk2qu!
2Tq

@U~q!2U (0)~q!#,

~62!

whereU (0)(k) obeys Eq.~60! with n50, i.e., the standard
Lippmann-Schwinger equation. Introducing the new quan
j(q)52@U(q)2U (0)(q)#/(2Tq), for its Fourier transform
j(r ) we find an equation that is nothing else but the Sch¨-
dinger equation~9! with w (0)(r ) replaced bya1j(r ). As
j(r )→0 whenr→`, we can conclude thatj(r )5ac (0)(r ).
Hence, forn→0 we get

U~k!.U (0)~k!S 11g~k,n!
8

Ap
Ana3D . ~63!

Hereg(k,n)→1 whenn→0, and the scattering lengtha is
defined by Eq.~11!. The result derived for the in-medium
scattering amplitudeU(k) coincides with the low-density ex
pansion for the effective potential found within the effectiv
interaction approach at zero temperature@see Eq.~4.27! in
the review@18##. This shows once more that there are act
parallels between our model and the approach of Ref.@4#.
However, these parallels are accompanied by significant
ferences. First, in general the in-medium Lippman
Schwinger equation~60! is not a variant of thet matrix equa-
tion, which is frequency dependent, contrary to Eq.~60!.
Second, Eq.~60! has been found beyond any diagram tec
nique by means of a variational procedure whose con
quence is that the pair wave functions ‘‘generating’’ i
medium scattering amplitudes coincide with the pair wa
functions involved ing(r ). On the contrary, this is not true
for the effective-interaction scheme, which implies pla
waves forwp(r ) in the pair distribution function~see the
discussion in Sec. V! and certainly goes beyond the plan
wave approximation when calculating thet matrix corre-
sponding to a pair of particles with nonzero total momentu
Third, in Eqs.~57!–~60! we deal withT̃k rather than with
Tk , appearing in the effective-interaction scheme. For m
information, see also the discussion in@10#. Now, returning
to Eq.~63!, we can conclude that forr &R @R is the radius of
the interaction potentialF(r ); for strongly singular poten-
tials R is of the order of the scattering lengtha# andn→0 we
obtain the following in-medium renormalization:

w~r !.w (0)~r !S 11
8Ana3

Ap
D . ~64!

Thus, the correlation hole coming from the repulsion
bosons at small particle separations becomes less ma
with an increase of the density of the surrounding boso
which is mainly the result of the Bose-Einstein statistics. F
the pair distribution function at small boson densities
have g(r )}@w (0)(r )#2 @see the expression~83!#. So, for
strongly singular potentials, whenw (0)(r 50)50, the correct
strong-coupling resultg(r 50)50 occurs for a dilute Bose
gas if Eqs.~2!, ~8!, and~51! are taken as the basic relation
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It is interesting to note that for the effective-interactio
approach@4# an upper cutoff in the momentum space atpc
.\/a is usually made. Thus, one could expect that owing
the uncertainty relation in-medium renormalization would
essential whena&r in real space. Equation~64! shows that
this is not the case. As is seen,w(r ) at small separations i
really a solution of the bare Schro¨dinger equation~see Sec. I!
but differs fromw (0)(r ) by the multiplier (118Ana3/Ap).
We also remark that unusual overscreening takes place
w(r ) when r→`. Indeed, Eq.~58! yields

lim
k→0

kc~k!52
1

2
AmU~0!

n
.

The last relation implies that for the condensate-conden
pair wave function we havec(r )5w(r )21}1/r 2 for r
→`, in contrast to the bare wave functionc (0)(r )
5w (0)(r )21}1/r for r→` @see Eq.~10!#.

VIII. LOW-DENSITY EXPANSIONS

Now, to verify that a subtle balance of the terms comi
from the short-range particle correlations plays a signific
role in the problem of the strong-coupling Bose gas, let
calculate low-density expansions of the basic thermo
namic quantities. The relation for the condensate depleti

z5
n2n0

n
5E d3q

~2p!3

nq

n
5

8Ana3

3Ap
1••• ~65!

can be obtained from Eq.~57! with the ‘‘scaling’’ substitu-
tion given by Eq.~39!.

The low-density expansion for the energy can be deri
in four different ways.

A. The chemical potential

The first way of obtaining the energy expansion de
with the chemical potentialm and starts from the following
relation form valid in the presence of the Bose condens
@8#:

m5
1

An0
E d3r 8F~ ur2r 8u!^ĉ†~r 8!ĉ~r 8!ĉ~r !&. ~66!

Hereĉ†(r ) andĉ(r ) stand for the Bose field operators. Th
relation follows from the well-known expression for an i
finitesimal change of the grand canonical potentialdV

5^d(Ĥ2mN̂)& and the necessary condition of the minimu
of V with respect to the order paramet
N0 :]V(N0 ,m,T)/]N050, the Hamiltonian depending o
the number of condensed particles owing to the substitu
â0

†5â05AN0. Equations~5! and ~66! lead to@24#

m5n0U~0!1A2E d3q

~2p!3
nqUq/2~q/2!, ~67!

whereU(0) is defined by Eq.~53!, and
o

or

te

t
s
-

d

s

e

n

Up~k!5E d3rwp~r !F~r !exp~2 ik•r !. ~68!

Using the substitution~39! in the integral and taking into
consideration Eqs.~55!, ~63!, and ~65!, we can rewrite Eq.
~67! for n→0 as

m5nU~0!~11z1••• !5
4p\2an

m S 11
32

3Ap
Ana31••• D .

~69!

This, together with the thermodynamic relationm
5]@n«(n)#/]n, yields the following result:

«5
2p\2an

m S 11
128

15Ap
Ana31••• D , ~70!

known since the familiar paper by Lee and Yang@25# and
found with the binary collision expansion method.

B. Direct calculation of the energy

The method of this subsection is direct and starts from
expression~8!. Inserting Eq.~2! into Eq. ~6! and using the
substitution~39! in the integral, we can rewrite the pair dis
tribution function forn→0 in the form

g~r !.~112z!w2~r !, ~71!

where the relation~55! is implied. Note that this expressio
is not valid at sufficiently larger as the boundary condition
g(r )→1 for r→` is not satisfied. However, here we are n
interested in the long-range behavior ofg(r ) because we use
Eq. ~71! when integratingg(r ) multiplied by the short-range
potentialF(r ). Equation~71! makes it possible to represen
Eq. ~8! for n→0 as

«.
n

2
~112z!U~0!1E d3q

~2p!3 S Tq

nq

n
1

n

2
~1

12z!U~q!c~q! D . ~72!

Taking the term proportional toz in the integral in Eq.~72!,
we can rewrite it forn→0 in the form

I 5nzE d3q

~2p!3
U~q!c~q!.nzE d3q

~2p!3
U (0)~q!c (0)~q!

52nz
4p\2

m
b, ~73!

where the vacuum scattering amplitudeU (0)(q) and the
characteristic lengthb are given by Eqs.~59! and ~22!, re-
spectively. Using the substitution~39! in the residual part of
the integral in Eq.~72!,

E d3q

~2p!3 S Tq

nq

n
1

n

2
U~q!c~q! D ,
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and taking into account Eqs.~57!, ~58!, ~63!, and ~65!, we
arrive at Eq.~70! but with the second term multiplied by th
factor l5125b/(8a). Now the question arises which var
ant we should prefer, Eq.~70! or Eq. ~70! with the factorl
5125b/(8a), and what is the reason for this ambiguo
situation?

To answer this question, let us reconsider the procedur
calculating « given in this subsection. As was mentione
earlier, Eqs.~57! and ~58! used in our calculations are con
sistent with Eq.~26! rather than with Eq.~51!. Being char-
acteristic of the Bogoliubov model, Eq.~26! is accurate to
the leading order in (n2n0)/n and differs from Eq.~51! by
the supracondensate-condensate term neglected in the B
liubov relation. The problem of thel factor turns out to be
directly related to this term. It can be taken into account
representing Eq.~51! for n→0 in the form

nk~nk11!5~112z!c2~k!. ~74!

Solving this equation with respect tonk and noticing Eq.
~58!, one can obtain

nk5
1

2 S A@ T̃k1nU~k!#212zn2U2~k!

AT̃k
212nT̃kU~k!

21D . ~75!

Now, restarting from Eq.~72! and making use of the system
of Eqs.~75! and~58! instead of that of Eqs.~57! and~58!, we
arrive at Eq.~70!. The term given by Eq.~73! is now can-
celed due to the correcting term 2zn2U2(k) involved in Eq.
~75!. So we face a rather complicated situation: namely
get the correct result~70! in the direct calculations startin
from Eq. ~8!, we have to abandon Eq.~57! in favor of Eq.
~75!, while for c(k) we can exploit Eq.~58!. The most im-
portant point here is the uniform convergence of the integ
in Eq. ~72! provided Eq.~75! is used. This allows for em
ploying Eq. ~75! together with Eq.~58! in spite of the fact
that the latter has been found in the leading order inn
2n0)/n. The higher-order corrections to Eq.~58! do not in-
fluence the result of calculating the integral in Eq.~72! if we
limit ourselves to the leading and next-to-leading orders
na3. It is worth noting that replacing Eq.~75! by Eq. ~57!
does not influence Eqs.~65! and ~69!. So the preliminary
result for« found in @3# and corresponding to Eq.~70! with
the second term multiplied by the factorl5125b/(8a) has
to be abandoned in favor of Eq.~70!.

The analysis carried out in this section demonstrates
crucial role of the subtle balance of the terms coming fr
the boson scattering~or, in other words, from the short-rang
boson correlations!. Disturbance of this fine interplay, whic
seems to be insignificant, can nevertheless lead to wr
conclusions. We stress that the strong-coupling mode
Ref. @3# is balanced because it takes into consideration
supracondensate-condensate scattering waves inboth the
pair distribution function and the relation connecting the m
mentum distribution with the pair wave functions. On t
contrary, the effective-interaction approach is not balan
with respect to the supracondensate-condensate scatt
waves, which are missed in the pair distribution function b
make a contribution to the dressed potential~see Sec. V!.
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Exactly this problem is the basis for the so-called ultravio
divergence occurring in the effective-interaction approach

C. Energy expansion through the Hellmann-Feynman theorem

As shown in Sec. V, the effective-interaction approa
results in an irrelevant picture of the short-range boson c
relations. This is why it cannot yield the correct individu
values of the interaction« int and kinetic«kin energies by
direct calculations based on Eq.~8!. Recall that we have the
following definitions: these energies are defined by

« int5
1

N K (
i 5” j

g

2
F~ ur i2r j u!L 5

n

2E d3rgF~r !g~r !,

~76!

«kin5
1

N K 2(
i

\2¹ i
2

2m L 5E d3k

~2p3!
Tk

nk

n
, ~77!

where^•••& stands for the statistical average with respect
the ground state, and the auxiliary parameterg is the cou-
pling constant. The total energy per particle~8! is given by
the sum of« int and«kin at g51:

E/N5«5«kin1« int . ~78!

Our model provides the correct short-range behavior
the pair distribution functiong(r ). So we can first evaluate
« int(g), and then obtain the total energy~8! by means of the
well-known expression often called the Hellmann-Feynm
theorem, which is just the variational theorem for the grou
state obeying theN-body Schro¨dinger equation

dE5^dĤ&. ~79!

In Eq. ~79! dE anddĤ are infinitesimal changes of the av
erage energy (E5^Ĥ&) and the Hamiltonian

Ĥ52(
i

\2¹ i
2

2m
1

1

2 (
i 5” j

gF~ ur i2r j u!, ~80!

respectively. The relations~76!, ~77!, ~79!, and ~80! lead to
the important equations

« int5g
]«

]g
, «kin52m

]«

]m
. ~81!

From the first expression in Eq.~81! it follows that

«5E
0

1

dg
« int~g!

g
. ~82!

To evaluate« int(g) in the leading and next-to-leading orde
in na3, it is convenient to rewrite Eq.~71! as

g~r !.w~na3!@w (0)~r !#2, ~83!

where Eqs.~64! and~65! are taken into account andw(na3)
is given by

w~na3!511
64

3Ap
Ana3. ~84!
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The range of particle separations for which Eq.~83! is cor-
rect coincides with that of Eq.~71! ~see the discussion there!.
Keeping in mind Eqs.~21!, ~23!, ~76!, ~82!, and ~83!, we
obtain

«.
2p\2n

m E
0

1

dg
]a

]g
w~na3~g!!5

2p\2n

m E
0

a

da8w~na83!.

Thus, using Eq.~84!, we arrive at Eq.~70! again.

D. Energy expansion through the virial theorem

This method was proposed by Bogoliubov in his origin
paper @6# in order to obtain the leading-order term in th
energy expansion. Here we consider this method in a m
general form. As in Sec. VIII C, we start from the expressi
for the pair distribution functiong(r ,n) which is assumed to
be a known function of the densityn. The basic idea is to
derive the differential equation for«(n).

On the one hand, from the virial theorem we get the f
lowing expression for the pressure:

P5
2

3
«kin~n!n2

n2

6 E d3r
dF~r !

dr
rg~r ,n!, ~85!

where«kin(n) is given by Eq.~77!. On the other hand, we
have the thermodynamic relation

P5n2
]«~n!

]n
~86!

valid at zero temperature. Here«(n) is the energy per par
ticle ~8!, which can be written as

«~n!5«kin~n!1
n

2E d3rg~r ,n!F~r !. ~87!

The system of Eqs.~85!–~87! yields a differential equation
for «(n) whose general solution is of the form

«5C0n2/32
1

6E d3r S dF~r !

dr
r 12F~r ! Dx~r ,n!, ~88!

where the functionx(r ,n) stands for

x~r ,n!5n2/3E
0

n

dn8
g~r ,n8!

n82/3
~89!

and C0 is the integration constant. Note that Eqs.~88! and
~89! are valid for both the Bose and Fermi systems beca
we have not used the type of statistics when deriving th
equations. For a Fermi system the constantC0 is not equal to
zero, while for a Bose system we should putC050 provided
Bose-Einstein condensation takes place. Substituting
~83! in Eq. ~89!, from Eq. ~88! we get

«5J
n2/3

6 E
0

n

dn8
w~n8a3!

n82/3
, ~90!

where
l

re

-

se
e

q.

J52E d3r S dF~r !

dr
r 12F~r ! D @w (0)~r !#25U (0)~0!.

The last equation can be derived after a little algebra with
help of Eqs.~9!–~12!. As is seen, Eq.~90! together with Eq.
~84! leads to the low-density expansion~70!.

Thus, all four ways of calculating« within the strong-
coupling model developed in Ref.@3# leads to Eq.~70!.

E. Interaction and kinetic energies

For any physical quantity there usually exist various c
culating procedures leading to the same result provided
model considered is consistent. By contrast, in the prese
of a thermodynamic inconsistency different ways of calc
lating any thermodynamic quantity are able to produce d
ferent results@26,27#; one of them can be reasonable b
others are completely inadequate. Such a situation is real
when evaluating the interaction and kinetic energies via
effective-interaction method. This is demonstrated below

The interaction~76! and kinetic~77! energies of a dilute
Bose gas can be evaluated on the basis of the Hellma
Feynman theorem with the help of Eq.~70!. Representing
this expansion for« in the form

«5
2p\2an

m
f ~na3!, ~91!

and keeping in mind Eqs.~81! and ~23!, one can derive

« int5
2p\2~a2b!n

m S f ~na3!13na3
d f~na3!

d~na3!
D , ~92!

«kin5
2p\2bn

m F f ~na3!13na3S 12
a

bDd f~na3!

d~na3!
G . ~93!

According to Eq.~70! f (x)511128Ax/(15Ap), which to-
gether with Eqs.~92! and ~93! yields

« int5
2p\2~a2b!n

m S 11
64

3Ap
Ana31••• D , ~94!

«kin5
2p\2bn

m F11
64

3Ap
Ana3S 12

3a

5bD1•••G . ~95!

As is seen from Eqs.~91!-~93!, terms involvingb are present
in the expressions for the kinetic and interaction energies
mutually canceled in the total energy«. We emphasize tha
the reasoning of this paragraph can be fulfilled for both
effective-interaction approach and the model developed
the present authors.

Our approach is fully consistent, which makes it possi
to derive Eqs.~94! and ~95! in another way using direc
calculations. Indeed, Eq.~76! taken atg51 in conjunction
with Eqs. ~21! and ~83! results in Eq.~94!. Notice that the
supracondensate-condensate scattering waves make a s
cant contribution to the next-to-leading term of the low
density expansion for« int . It is also not difficult to find the
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low-density expansion for the kinetic energy~95! with the
help of Eqs.~63!, ~65!, and~75!.

In contrast, due to the thermodynamic inconsistency,
effective-interaction scheme does not allow for obtain
Eqs. ~94! and ~95! directly, beyond the Hellmann-Feynma
theorem taken with Eq.~70!. Let us show this for the pseudo
potential approach discussed in Sec. V. To evaluate the
netic energy in this case, one can start from Eq.~77! and use
the Bogoliubov formula~35! with the pseudopotential sub
stitution ~47!. In so doing the divergent integral*d3k/k2

should be ignored~see the discussion in Sec. V!. Similarly,
the interaction energy atg51 can be derived from Eqs.~25!,
~35!, ~36!, and~47! using the same regularization. Howeve
to simplify the calculations, we adopt another way leading
the same results and based on the low-density expan
~42!, found within the Bogoliubov model. The original Bo
goliubov scheme is fully consistent, which implies equiv
lence of different ways of calculating any thermodynam
quantity. Therefore, we can first find the kinetic and inter
tion energies by using the Hellmann-Feynman theorem
gether with Eq.~42! and then replacea0 by a anda1 by 0 in
the derived expressions. From the definition~16! it follows
that

g
]a0

]g
5m

]a0

]m
5a0 , g

]a1

]g
5m

]a1

]m
52a1 .

Hence, within the Bogoliubov model we can arrive at

« int5
2p\2n

m S a012a11a0

64

3Ap
Ana0

31••• D , ~96!

«kin5
2p\2n

m S 2a12a0

64

5Ap
Ana0

31••• D , ~97!

provided Eqs.~42! and ~81! are taken into consideration
Now, replacinga0 by a and substituting 0 fora1 ~the latter
allows for escaping the ultraviolet divergence; see Sec.!,
we obtain the following expressions:

« int5
2p\2an

m S 11
64

3Ap
Ana31••• D , ~98!

«kin52
2p\2an

m

64

5Ap
Ana31•••, ~99!

which should be compared with the correct results given
Eqs.~94! and~95!. As is seen, the sum of the rhs of Eqs.~98!
and ~99! gives the rhs of Eq.~70! but at the expense of
negative value of the kinetic energy~99!. Notice that the
Bogoliubov model is free from this nonphysical feature b
causea1,0, which leads to«kin.0 at sufficiently small
densities. Thus, Eqs.~98! and~99!, found within the pseudo-
potential model, are inadequate. The reason is obvious:
pseudopotential scheme allows for restoring the functio
dependence on the scattering lengtha in Eqs.~98! and ~99!
while it completely ignores the additional lengthb that can-
not be involved in the pseudopotential model due to the
traviolet divergence.

Note that in the case of the hard-sphere interaction~18!
we geta5b from the solution of the Schro¨dinger equation
e
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~9!. Then, in the general case of Eq.~91! the relations« int
50, «kin5« come from Eqs.~92! and~93!. Thus we arrive
at an interesting property of the Bose gas with the pairw
potential ~18!: namely, although the Bose gas is strong
interacting, the interaction energy is equal to zero. Hen
the total energy of a dilute Bose gas made of hard sphere
exactly equal to the kinetic energy. One can see that
result is rather general:for the hard-sphere potential~18! the
interaction energy is equal to zero for any density.Indeed,
F(r ) given by Eq.~18! can be thought of as the limiting cas
of the repulsive potential

F~r !5H V0 , r ,a

0, r .a.

It is clear that saturation takes place whenV0@«: further
increase of the parameterV0 does not change the energy p
particle,«. Hence, according to Eqs.~76! and ~81!, « int50
because]«/]g50 at g51 in the limit V0→1`. Notice
that, even taken in the order linear in the densityn, Eqs.~98!
and ~99! lead to the opposite case« int.«, «kin.0. This
incorrect redistribution of the energy of a dilute Bose gas
the pseudopotential approach is also noted in@28#, where the
leading order of the low-density energy expansion is cons
ered.

Note that the relation Eq.~23! enables us to obtain th
lengthb in an experimental way by the isotopic shift of th
scattering lengtha:

b5aS 12
] ln a

] ln mD.aS 12
Da

a

m

DmD .

Hence, we are able to evaluate the interaction~94! and ki-
netic ~95! energies per particle via quantities that can
found experimentally.

IX. CONCLUSION

In conclusion, we remark that this paper concerns
thermodynamics of a dilute Bose gas with a strongly rep
sive interaction in the leading and next-to-leading orders
the low-density expansion. The strong-coupling generali
tion of the Bogoliubov model proposed by the present
thors is shown to reproduce the result~70! of Lee and Yang
@25# found via the binary collision expansion method. Co
trary to the effective-interaction approach of Ref.@4#, the
model considered in this paper is thermodynamically con
tent and free of ultraviolet divergences. These advantages
due to accurate treatment of the short-range spatial bo
correlations, whose picture is inadequate within t
effective-interaction scheme. The present paper thus dem
strates that the effective-interaction scheme, which is
duced to the Bogoliubov model with an effective pairwi
potential, is not acceptable for investigating a dilute stron
interacting Bose gas. In addition to the arguments mentio
above, this also follows from the results for the kinetic a
interaction energies found in this paper.

In some sense the strong-coupling model discussed ca
considered as a generalization of the Brueckner appro
taken in its representation given by Bethe and Goldst
@29#. The new essential point is that the in-medium pair wa
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functions are calculatedin conjunctionwith the particle mo-
mentum distribution on the basis of the variational pro
dure. So, to go further, additional investigations should
carried out to establish more accurate approximations of
relation connecting the boson momentum distribution w
the scattering parts of the in-medium pair wave functions
particular, this improvement is needed to clarify to what e
tent the correct spectrum of elementary excitations in a di
Bose gas differs from the well-known prediction of th
effective-interaction approach. Of course, the region of in
ie-

e
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mediate momenta is implied, rather than the linear phon
sector, which should be the same according to the thermo
namic prescription. This problem is closely related to inve
tigation of long-range spatial boson correlations beyond
effective-interaction approach.
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